ISEE-3 (ICE) Spacecraft Detected

ISEE-3 (ICE) Spacecraft was detected today using a 1.2m dish at 2270.390831 MHz. The signal at this frequency was also simultaneously detected and confirmed by Paul over at UHF-Satcom. The detection was accomplished by integrating multiple FFTs with the spacecraft TX frequency corrected for Doppler. Without precise Doppler correction the signal would not be detectable – I confirmed by turning integration off. I also confirm target by off-pointing the dish confirming loss of signal in multiple directions. The Doppler correction is accomplished with an application that takes NASA Horizon data and calculates a real time adjustment to the TX frequency of the spacecraft. This adjusted “offset” is then used to update the SDR IF frequency. The software that makes this possible was written by r00t in .cz.

Below is a screenshot that pretty much sums things up.

Doppler correct ICE signal.

Doppler correct ICE signal.

Posted in Spacecraft Tagged ,

LRO on S-Band

The Lunar Reconnaissance Orbiter (LRO) is a nice S-Band (2271 MHz) signal coming from the moon to calibrate your dish. This is especially helpful if you need the accuracy for even higher frequencies where the beam-width is narrower. Below is a screenshot after optimization of LNA assembly, calibration of azimuth and elevation as well as adjustment of phase center of the feed.

lro

LRO wilth doppler and sidebands.

LRO wilth doppler and sidebands.

The LNA assembly and feed shown below is just temporary for this measurement. Normally the LNA is located a few meters away inside an equipment box but for this peaking i wanted to remove all feed line loss.

LNA / Feed Assembly for S-Band.

LNA / Feed Assembly for S-Band.

Posted in Spacecraft Tagged ,

Mars and Saturn in June

It’s getting hot and atmospheric conditions are not the best for astrophotography, however stacking 5000 images does help a bit with the variable focus.

Mars.

Mars.

Saturn.

Saturn.

Posted in Astronomy Tagged

Inmarsat Aero-P ACARS Multi-Channel Decoder

Inmarsat Aero-P includes an ACARS service for airlines to use while transiting the various ocean regions. This is much more reliable than HF ACARS. Inmarsat hosts 3-4 Aero-P control channels on L-Band for each ocean region. Each control channel is running OQPSK at 10.5K bits/s rate. This new decoder is actually 4 decoders in parallel and is capable of monitoring an entire ocean region. Currently both RFSpace SDR-IP and NetSDR is supported as well as the QSDR. The required bandwidth is 200 KHz. I can make this work with 190 KHz which would then add the SDR-IQ (with Ethernet server app) to the list of supported SDRs. As usual, this decoder interfaces over Ethernet. Below are a few screenshots of the working prototype.

Here is plot of the 4 channels from the IOR region. These are always on and continuous transmitting so they are easy to find.

IOR Aero-P Control Channels.

IOR Aero-P Control Channels.

The next screenshot is POR region. You can see the 3 Aero-P channels in the IQ Viewer in lower left. Above that are logging windows for each channel, in POR case, there are 3 channels. The other console window is the main decoder log, shows current SDR status, Signal Unit count, ACARS traffic count, CPDLC counts as well as log-on events. All traffic is sorted per aircraft and written to disk – so everything is archived.

POR Aero-P ACARS sample.

POR Aero-P ACARS Sample.

Here is a sample from UHF-Satcom for the AOR region (thanks Paul).

AOR region Aero-P ACARS sample.

AOR region Aero-P ACARS sample.

Here is a sample from another user monitoring IOR region.

IOR region Aero-P ACARS sample.

IOR region Aero-P ACARS sample.

There is support for streaming all TEXT ACARS messages over to Plane Plotter.

Aero-P ACARS on Plane Plotter.

Aero-P ACARS on Plan Plotter.

Below is screenshot of directory where messages are stored. You can see in this case there is some trouble with WIFI.

Sample logging.

Sample logging.

Support for ACARS Display was added, which is a step up from Plane Plotter IMO. You can see that ACARS Display will automatically look up the ICAO based on registration number.

ACARS Display Support.

ACARS Display Support.


If you click on one of the registration numbers (such as B-HKU) you will be brought to a website that will give you up to date information about that aircraft (as shown below).

Flight Lookup.

Flight Lookup.

Posted in Inmarsat, Projects, SATCOM Tagged ,

Multi-Channel Inmarsat-C Decoder

Below is graphical overview of Marine-C, an Ethernet based Multi-Channel Inmarsat-B decoder. The decoder is able to simultaneous decode up to 12 channels and therefore can cover an entire ocean region with this single application. The decoder monitors all LES channels as well as the main NCS channel and properly decodes all messages and bulletins, including data and text. All results are automatically saved and can be left un-attended without missing anything. Two SDRs are required because the NCS and LES channels are too far apart to capture with single SDR.

Overview of 12 channel Standard-C Decoder.

Overview of 12 channel Standard-C Decoder.

Below shows some sample output for message status, LCN and SDR status. Also shown is FFT of NCS and various LES channels. You don’t need to run the IQ viewers for normal operation.

FFT of NCS and LES along with message and LCN status.

FFT of NCS and LES along with message and LCN status.

The output is directories with text and data files as shown below.

File output examples.

File output examples.

Since this application is entirely Ethernet based you may be wondering how I am using the SDR-IQ, which is USB based.

The SDR-IQ is hosted on a Raspberry PI and serves up the appropriate Ethernet packets so that the main decoder application just sees another SDR-IP or NetSDR.

Raspberry PI hosting SDR-IQ.

Raspberry PI hosting SDR-IQ.

Posted in Inmarsat, Projects Tagged

Lunar Eclipse 2014

Persistence and coffee helped to produce the two images below of the Lunar Eclipse last night. I was fighting high wispy clouds all night. The 1st magnitude star Spica was conveniently parked next to the moon and made for a nice photo op.

Phase of Lunar Eclipse.

Phase of Lunar Eclipse.

Full Lunar Eclipse with Spica  Star.

Full Lunar Eclipse with Spica Star.

Posted in Astronomy Tagged

April Planets with some nice Glass

Spent some time with the big gas planets and Mars. Mars is closest to Earth since 2007 and is still pretty hard to see. Jupiter turned out nice. Saturn was a bit out of focus, seeing was not too good. Will try again in May for better Saturn image.

Jupiter

Jupiter

Mars

Mars

Saturn

Saturn

Here is a shot of the telescope. This is remotely operated, not local.

Ritchey Chretien 16"

Ritchey Chretien 16″

Quite a bit of weight needed for balance.

Quite a bit of weight needed for balance.

Posted in Astronomy Tagged

Multi-Channel Inmarsat-B Decoder

Below is a graphical overview of Marine-B, an Ethernet based Multi-Channel Inmarsat-B decoder.

Overview of Multi-Channel Inmarsat-B Decoder

Overview of Multi-Channel Inmarsat-B Decoder

Below is a more detailed block diagram of multi-channel decoder with a few screenshots of operational logging and FFT waveforms.

Marine-B Screenshots.

Marine-B Screenshots

Marine-B is a fully automatic frequency agile Inmarsat-B multi-channel decoder. The decoder supports BPSK for NCS call logging/directing, OQPSK for APC voice demodulation, real time audio output and automated MP3 audio file archiving. It can handle as many voice decoders as CPU capability allows. Initial testing with multi-core i7 Intel CPU comfortable supports 6-12 parallel channels.

The decoder only supports RFSpace SDR-IP or NetSDR SDRs.

Here a a couple of short sample voice decodes (these are generic and do not violate any privacy).

Audio clip: Adobe Flash Player (version 9 or above) is required to play this audio clip. Download the latest version here. You also need to have JavaScript enabled in your browser.

Audio clip: Adobe Flash Player (version 9 or above) is required to play this audio clip. Download the latest version here. You also need to have JavaScript enabled in your browser.

Posted in Inmarsat, Projects Tagged

Inmarsat B Decoder

This is a multi-channel Inmarsat B Decoder. It uses a single RF-Space SDR-IP to receive L-Band IQ data via Ethernet and then does all demodulation and decoding in software. The demo below has 5 voice decoders, although only 2 are active during the demo. More channels are possible depending on CPU capabilities. In addition to the voice channel decoders there is a NCS control channel decoder that is responsible for all channel assignments and coordination. Although voice is shown in the demo, both data and fax are also possible.

SDR-IP

SDR-IP

Posted in Inmarsat Tagged

New Hardware for some new Software

I have been working on some new decoding software that directly interfaces to RF Space SDR-IP or NetSDR. These SDR’s provide wide-band IQ data over Ethernet and are ideal for plug and play operation. All the new decoders are multi-channel and offer simultaneous decoding in real time for multiple protocols, including voice, data and fax for multiple Inmarsat services. More to be posted soon.

RF Space SDR-IP

RF Space SDR-IP

Posted in Inmarsat, Projects Tagged